

VERTEX DECOMPOSABILITY OF K-COHEN-MACAULAY SIMPLICIAL COMPLEXES OF CODIMENSION 3

Seyed Mohammad Ajdani¹, Francisco Bulnes^{2*}

¹Department of Mathematics, Zanjan Branch Islamic Azad University, Zanjan, Iran ²IIINAMEI, Research Department of Mathematics and Engineering, TESCHA, Chalco, Mexico

Abstract. Let Δ be a simplicial complex on vertex set [n]. It is shown that if Δ is k-Cohen-Macaulay of codimension 3, then Δ is vertex decomposable. As a consequence we show that Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$.

Keywords: Vertex decomposable, simplicial complex, Shellable.

AMS Subject Classification: 13F20, 05E40, 13F55.

Corresponding author: Francisco Bulnes, IIINAMEI, Research Department of Mathematics and Engineering, TESCHA, Chalco, Mexico, e-mail: *francisco.bulnes@tesch.edu.mx*

Received: 8 October 2020; Revised: 26 November 2020; Accepted: 30 November 2020; Published: 29 December 2020.

1 Introduction

Let Δ be a simplicial complex on vertex set $[n] = \{1, \dots, n\}$, i.e. Δ is a collection of subsets of [n] with the property that if $F \in \Delta$, then all subsets of F are also in Δ . An element of Δ is called a *face* of Δ , and the maximal faces of Δ under inclusion are called *facets*. We denote by $\mathcal{F}(\Delta)$ the set of facets of Δ . The *dimension* of a face F is defined as dim F = |F| - 1, where |F| is the number of vertices of F. The dimension of the simplicial complex Δ is the maximum dimension of its facets. A simplicial complex Δ is called *pure* if all facets of Δ have the same dimension. Otherwise it is called non-pure. We denote the simplicial complex Δ with facets F_1, \ldots, F_t by $\Delta = \langle F_1, \ldots, F_t \rangle$. A simplex is a simplicial complex with only one facet.

For the simplicial complexes Δ_1 and Δ_2 defined on disjoint vertex sets, the join of Δ_1 and Δ_2 is $\Delta_1 * \Delta_2 = \{F \cup G : F \in \Delta_1, G \in \Delta_2\}.$

For the face F in Δ , the link, deletion and star of F in Δ are respectively, denoted by $\operatorname{link}_{\Delta} F, \Delta \setminus F$ and $\operatorname{star}_{\Delta} F$ and are defined by $\operatorname{link}_{\Delta} F = \{G \in \Delta : F \cap G = \emptyset, F \cup G \in \Delta\}$ and $\Delta \setminus F = \{G \in \Delta : F \nsubseteq G\}$ and $\operatorname{star}_{\Delta} F = \langle F \rangle * \operatorname{link}_{\Delta} F$.

Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in *n* indeterminates over a field *K*. To a given simplicial complex Δ on the vertex set [n], the Stanley–Reisner ideal is the squarefree monomial ideal whose generators correspond to the non-faces of Δ . we set:

$$\mathbf{x}_F = \prod_{x_i \in F} x_i.$$

We define the facet ideal of Δ , denoted by $I(\Delta)$, to be the ideal of S generated by $\{\mathbf{x}_F: F \in \mathcal{F}(\Delta)\}$. The non-face ideal or the Stanley-Reisner ideal of Δ , denoted by I_{Δ} , is the ideal of S generated by square-free monomials $\{\mathbf{x}_F: F \in \mathcal{N}(\Delta)\}$. Also we call $K[\Delta] := S/I_{\Delta}$ the Stanley-Reisner ring of Δ . We say the simplicial complex Δ is Cohen–Macaulay if $K[x_1, \ldots, x_n]/I_{\Delta}$ is Cohen–Macaulay. One of interesting problems in combinatorial commutative algebra is the

Stanley's conjectures. The Stanley's conjectures are studied by many researchers. Let R be a \mathbb{N}^n - graded ring and M a \mathbb{Z}^n - graded R- module. Then Stanley (1982) conjectured that

 $depth(M) \leq sdepth(M)$

He also conjectured in Stanley (1996) that each Cohen-Macaulay simplicial complex is partitionable. Herzog et al (2008) showed that the conjecture about partitionability is a special case of the Stanley's first conjecture. Duval et al (2016) construct a Cohen-Macaulay complex that is not partitionable, thus disproving the partitionability conjecture. Hachimori gived an open problem as following:

Whether every two dimensional Cohen-Macaulay simplicial complex is partitionable; see Hachimori, (2008). In this paper, we will answer to this problem in the special case. Ajdani & Bulnes (2019) proved the following result:

Theorem 1. (Ajdani & Bulnes, 2019; Theorem 2.3) If Δ is a Cohen-Macaulay simplicial complex of codimension 2, then Δ is vertex decomposable.

This paper is organized as follows: In Section 1, we recall some definitions and results which will be needed later. In Section 2, we show that any k-Cohen-Macaulay simplicial complex of codimension 3 is vertex decomposable (see Theorem 2).

In Section 3, as a consequence we show that Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$.

2 Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 1. A simplicial complex Δ is recursively defined to be vertex decomposable, if it is either a simplex, or else has some vertex v so that,

- (a) Both $\Delta \setminus v$ and $link_{\Delta}(v)$ are vertex decomposable, and
- (b) No face of $link_{\Delta}(v)$ is a facet of $\Delta \setminus v$.

A vertex v which satisfies in condition (b) is called a shedding vertex.

Definition 2. A simplicial complex Δ is shellable, if the facets of Δ can be ordered F_1, \ldots, F_s such that, for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$.

A simplicial complex Δ is called disconnected, if the vertex set V of Δ is a disjoint union $V = V_1 \cup V_2$ such that no face of Δ has vertices in both V_1 and V_2 . Otherwise Δ is connected. It is well-known that

vertex decomposable \implies shellable \implies Cohen-Macaulay

Definition 3. A graded S-module M is called sequentially Cohen-Macaulay (over K), if there exists a finite filtration of graded S-modules,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < \dots < \dim(M_r/M_{r-1}).$$

3 Vertex decomposability k-Cohen-Macaulay simplicial complexes of codimension 3

As the main result of this section, it is shown that every k-Cohen-Macaulay simplicial complexes of codimension 3 is vertex decomposable. For the proof we need the following lemmas:

Lemma 1. (Miyazaki, 1990; Lemma 2.3) Let Δ be a simplicial complex with vertex set V. Let $W \subseteq V$ and let σ be a face in Δ . If $W \cap \sigma = \emptyset$, then $\operatorname{link}_{\Delta \setminus W} \{\sigma\} = \operatorname{link}_{\Delta} \{\sigma\} \setminus W$.

Definition 4. Let K be a field. A simplicial complex Δ with vertex set V is called k-Cohen-Macaulay of dimension r over K if for any subset W of V (including \emptyset), $\Delta \setminus W$ is Cohen-Macaulay of dimension r over K.

Lemma 2. Let Δ be a simplicial complex with vertex set V. Then the following conditions are equivalent :

- (i) Δ is k-Cohen-Macaulay;
- (ii) for all $\sigma \in \Delta$, $link_{\Delta}{\sigma}$ is k-Cohen-Macaulay;

Proof. By lemma 1, for any subset W of V, we have $link_{\Delta \setminus W} \{\sigma\} = link_{\Delta} \{\sigma\} \setminus W$. Since $\Delta \setminus W$ is Cohen-Macaulay so $link_{\Delta} \{\sigma\} \setminus W$ is Cohen-Macaulay. Therefore $link_{\Delta} \{\sigma\}$ is k-Cohen-Macaulay.

Now, we are ready that prove the main result of this section.

Theorem 2. Let Δ be a k-Cohen-Macaulay simplicial complex of codimension 3 on vertex set [n]. Then Δ is vertex decomposable.

Proof. We prove the theorem by induction on |[n]| the number of vertices of Δ . If |[n]| = 0, then $\Delta = \{\}$ and it is vertex decomposable. Now Let |[n]| > 0 and $d \in [n]$ be a vertex of Δ . Then the simplicial complex $\lim_{\Delta} \{d\}$ is a complex on |[n]| - 1 vertex and its dimension is $\dim \Delta - 1$. By lemma 2, $\lim_{\Delta} \{d\}$ is again k-Cohen-Macaulay of codimension 3. Therefore by induction hypothesis $\lim_{\Delta} \{d\}$ is vertex decomposable.

On the other hand since Δ is a k-Cohen-Macaulay, for each existing vertex $d \in \Delta$, $\Delta \setminus \{d\}$ is Cohen-Macaulay of codimension 2 and by Theorem 1, $\Delta \setminus \{d\}$ is vertex decomposable. It is easy to see that no face of $\text{link}_{\Delta}\{d\}$ is a facet of $\Delta \setminus \{d\}$. Therefore any vertex d is a shedding vertex and Δ is vertex decomposable.

4 Stanley Decompositions

Let R be any standard graded K- algebra over an infinite field K, *i.e.*, R is a finitely generated graded algebra $R = \bigoplus_{i\geq 0} R_i$ such that $R_0 = K$ and R is generated by R_1 . There are several characterizations of the depth of such an algebra. We use the one that depth(R) is the maximal length of a regular R- sequence consisting of linear forms. Let $x_F = \bigcap_{i\in F} x_i$ be a squarefree monomial for some $F \subseteq [n]$ and $Z \subseteq \{x_1, \ldots, x_n\}$. The K- subspace $x_F K[Z]$ of $S = K[x_1, \ldots, x_n]$ is the subspace generated by monomials $x_F u$, where u is a monomial in the polynomial ring K[Z]. It is called a squarefree Stanley space if $\{x_i : i \in F\} \subseteq Z$. The dimension of this Stanley space is |Z|. Let Δ be a simplicial complex on $\{x_1, \ldots, x_n\}$. A squarefree Stanley decomposition \mathcal{D} of $K[\Delta]$ is a finite direct sum $\bigoplus_i u_i K[Z_i]$ of squarefree Stanley spaces which is isomorphic as a \mathbb{Z}^n - graded K- vector space to $K[\Delta]$, *i.e.*

$$K[\Delta] \cong \bigoplus_i u_i K[Z_i].$$

We denote by $\operatorname{sdepth}(\mathcal{D})$ the minimal dimension of a Stanley space in \mathcal{D} and we define $\operatorname{sdepth}(K[\Delta]) = \max\{\operatorname{sdepth}(\mathcal{D})\}$, where \mathcal{D} is a Stanley decomposition of $K[\Delta]$. Stanley conjectured in Stanley (1982) the upper bound for the depth of $K[\Delta]$ as the following:

$$depth(K[\Delta]) \le sdepth(K[\Delta])$$

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on $\{x_1, \ldots, x_n\}$ with facets G_1, \ldots, G_t . The complex Δ is called partitionable if there exists a partition $\Delta = \bigcup_{i=1}^t [F_i, G_i]$ where $F_i \subseteq G_i$ are suitable faces of Δ . Here the interval $[F_i, G_i]$ is the set of faces $\{H \in \Delta : F_i \subseteq H \subseteq G_i\}$. In Stanley (1996) and Stanley (2000) respectively Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture. Indeed, Herzog et al (2008) proved that for Cohen-Macaulay simplicial complex Δ on $\{x_1, \ldots, x_n\}$ we have that depth $(K[\Delta]) \leq \text{sdepth}(K[\Delta])$ if and only if Δ is partitionable. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable. Then as a consequence of our results we obtain :

Corollary 1. If Δ is a k-Cohen-Macaulay simplicial complex of codimension 3, then Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$.

Acknowledgment. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- Ajdani, S.M., Jahan, A.S. (2016). Vertex Decomposability of 2-CM and Gorenstein Simplicial Complexes of Codimension 3. Bulletin of the Malaysian Mathematical Sciences Society, 39(2), 609-617.
- Ajdani, S.M. (2019). Algebraic Properties of the Path Complexes of Cycles. Mathematical Combinatorics, 4, 61-69.
- Björner, A. (1995). *Topological methods*, Handbook of combinatorics, 1(2), 1819-1872, Elsevier, Amsterdam.
- Duval, A.M., Goeckner, B., Klivans, C.J., & Martin, J.L. (2016). A non-partitionable Cohen-Macaulay simplicial complex. Advances in Mathematics, 299, 381-395.
- Hachimori, M. (2008). Decompositions of two dimensional simplicial complexes. *Discrete Math.*, 308(11), 2308-2312.
- Herzog J., Hibi, T. (2010). Monomial Ideals. In: GTM 260, Springer, London.
- Herzog J., Hibi, T. (1999). Componentwise linear ideals. Nagoya Math. J., 153(1999), 141-153.
- Herzog, J., Jahan, A.S., & Yassemi, S. (2008). Stanley decompositions and partitionable simplicial complexes. *Journal of Algebraic Combinatorics*, 27(1), 113-125.
- Miyazaki, M. (1990). On 2-Buchsbaum Complexes. J. Math. Kyoto Univ., 30, 367-392.
- Stanley, R.P. (1982). Linear Diophantine equations and local cohomology. Invent. Math., 68(2), 175-193.
- Stanley, R.P. (1996). Combinatorics and Commutative Algebra. Volume 41. Springer.
- Stanley, R.P. (2000). Positivity problems and conjectures in algebraic combinatorics. In Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI 295-319.